Saadi Samadi*ab, Akram Ashouria and Mehdi Ghambarianc aLaboratory of Asymmetric Synthesis, Department of Chemistry, Faculty of Science, University of Kurdistan, Zip Code 66177-15175, Sanandaj, Iran. E-mail: s.samadi@uok.ac.ir bResearch Centre of Nanotechnology, University of Kurdistan, P.O. Box 416, Sanandaj, Iran cGas Conversion Department, Faculty of Petrochemicals, Iran Polymer and Petrochemical Institute, P.O. Box 14975-112, Tehran, Iran
First published on 31st March 2017
1. Introduction
The direct functionalization of sp3 C-H bonds is one of the most important reactions in organic synthesis.1-4 Oxidation reaction of these bonds at the allylic position of cycloolefins (Kharash-Sosnovsky reaction) can be used as one of the most straightforward synthetic routes for the preparation of highly functionalized olefins such as allylic esters and allylic alcohols that are important intermediates in the synthesis of leukotriene B4 (ref. 5) chrysanthemic acid,6 brevetoxin7 and amyrin.8 The nature of the metal salt, perester oxidant, and reaction conditions including solvent and temperature are affected this reaction remarkably.9-17
Allylic C-H bond oxidation have been studied by homogeneous catalysts such as selenium,18-24 selenium dioxide,18-21,23 diselenides24 and pentafluorobenzeneselenic acid18-24 with different metals such as Hg(II),25-30 Pd(II),31-37 Pb(IV),25 Cr(VI),25,38,39 Co(III),40,41 Co(II),42-44 Mn(III),41,45,46 Ce(IV),41 Fe(II),47 Rh(II),48 Rh(I),49,50 Cu5-13 and a variety of ligands. However, copper-catalysis - due to its low cost - is the most popular in this field, although their large industrial scale usage is limited.
On the other side, supported nanometals are one of the most important categories of heterogeneous catalysts with broad applications in the industry. Some materials, such as SBA-15, MCM-41 and zeolite were applied for the preparation of metal nanoparticles.
Among them, SBA-15 has some advantages such as hexagonally arrayed channels and narrow pore size distribution so that it has attracted great attention.51-53 Immobilization of metal NPs within a silica scaffold prevents agglomeration and surface fouling, and aids in NP recovery and recycling.54-57
In our previous work, we reported the effect of some additives such activated silica gel, mesoporous MCM-41, SBA-15 silica, nanocrystalline MgO, CuO and TiO2 on this reaction and SBA-15 was shown better results than others.58-61 The strong effect of these additives encouraged us to prepare and characterize CuO encapsulated in mesoporous silica SBA-15 with various Cu loadings in the range of 1-12 wt% by an impregnation method in three routes, which was applied in allylic C-H bond oxidation of cyclic olefins.1-13
2. Experimental
2.1. General remarks
All reagents and starting materials were purchased from Aldrich, Merck, Fluka and Sigma. Cycloolefins were distilled from calcium hydride before use. All solvents for the reactions were also dried and distilled immediately before use. Melting points were measured on an Electrothermal 9100 apparatus and are uncorrected. Fourier transform infrared (FT-IR) spectrum was recorded on a Bruker Vector 22 spectrometer using pressed KBr pellets. X-ray diffraction patterns were obtained on a Simens D500 diffractometer with Cu Kα radiation. The SEM image and EDX patterns were taken using VEGATESCAN. The surface area was calculated by the BET method in Quantachrome Instruments.
2.2. The preparation of heterogeneous catalysts
The preparation of Cu-B-N-SBA-15 was drown in Scheme 1.
2.3. Allylic C-H bond oxidation of cyclic olefins
Allylic oxidation of cycloolefins was drown in Scheme 2.
3. Results and discussions
3.1. Characterization of heterogeneous catalyst
The catalyst was characterized by XRD, EDX, BET, SEM, AAS and FT-IR.
3.2. Catalytic effects in allylic C-H bond oxidation of cyclic olefins
4. Conclusions
In conclusion, CuO encapsulated in mesoporous silica SBA-15 as monometallic catalysts has been synthesized through the reaction of SBA-15 or aminopropyl modified SBA-15 with Cu(NO3)2 under different conditions. The catalytic potential of these heterogeneous catalysts was applied for the copper-catalyzed allylic oxidation of cycloolefins via sp3 C-H bond activation. Allylic esters were prepared in good yields, reasonably short period of time and high selectivity in acetonitrile in the presence of 40 mg of Cu-B-N-SBA-15 with 9 wt% loading of copper. For cyclohexene in comparison with other cycloolefins, the best result in term of yield (99%) and rate of reaction (25 h) was obtained.
Mild conditions of this reaction in combination with recyclability of the catalyst, make the presented work a desire approach to produce functionalized olefins in compared to the most of reports.
Acknowledgements
We are grateful to the University of Kurdistan Research Councils for the support of this work.
References
- C. Zheng and S. L. You, RSC Adv., 2014, 4, 6173-6214 RSC.
- F. L. Zhang, K. Hong, T. J. Li, H. Park and J. Q. Yu, Science, 2016, 351, 252-256 CrossRef CAS PubMed.
- J. D. Cuthbertson and D. W. MacMillan, Nature, 2015, 519, 74-77 CrossRef CAS PubMed.
- J. F. Hartwig and M. A. Larsen, ACS Cent. Sci., 2016, 2, 281-292 CrossRef CAS PubMed.
- R. Hayes and T. W. Wallace, Tetrahedron Lett., 1990, 31, 3355-3356 CrossRef CAS.
- J. Finici and J. d'Angelo, Tetrahedron Lett., 1976, 17, 2441-2459 CrossRef.
- E. Alvarez, M. T. Diaz, R. Perez, J. L. Ravelo, A. Regueiro, J. A. Vera, D. Zurita and J. D. Martin, J. Org. Chem., 1994, 59, 2848-2876 CrossRef CAS.
- E. J. Corey and J. Lee, J. Am. Chem. Soc., 1993, 115, 8873-8874 CrossRef CAS.
- D. J. Rawlinson and G. Sosnovsky, Synthesis, 1972, 1-28 CrossRef CAS.
- J. C. Frison, J. Legros and C. Bolm, Copper and Palladium Catalyzed Allylic Acyloxylations, in Handbook of CH Transformations, ed. G. Dyker, Wiley-VCH, Weinheim, 2005 Search PubMed.
- M. S. Kharasch, G. Sosnovsky and N. C. Yang, J. Am. Chem. Soc., 1958, 80, 756 CrossRef CAS.
- M. S. Kharash and A. Fono, J. Org. Chem., 1958, 23, 324 Search PubMed.
- M. S. Kharash and A. Fono, J. Org. Chem., 1958, 23, 325 CrossRef.
- M. S. Kharasch, G. Sosnovsky and N. C. Yang, J. Am. Chem. Soc., 1959, 81, 5819-5824 CrossRef CAS.
- A. L. Beckwith and A. A. Zavitsas, J. Am. Chem. Soc., 1986, 108, 8230-8234 CrossRef CAS.
- J. K. Kochi and A. Bemis, Tetrahedron, 1968, 24, 5099-5113 CrossRef CAS.
- C. Walling and A. A. Zavitsas, J. Am. Chem. Soc., 1963, 85, 2084 CrossRef CAS.
- H. Rapoport and U. T. Bhalerao, J. Am. Chem. Soc., 1971, 93, 4835-4840 CrossRef CAS.
- M. J. Francis, P. K. Grant, K. S. Low and R. T. Weavers, Tetrahedron, 1976, 32, 95-101 CrossRef CAS.
- M. A. Umbreit and K. B. Sharpless, J. Am. Chem. Soc., 1977, 99, 5526-5528 CrossRef CAS.
- W. Woggon, F. Ruther and H. Egli, J. Chem. Soc., Chem. Commun., 1980, 706-708 RSC.
- M. lwaoka and S. Tomoda, J. Chem. Soc., Chem. Commun., 1992, 1165-1166 Search PubMed.
- K. Shibuya, Synth. Commun., 1994, 24, 2923-2941 CrossRef CAS.
- D. H. R. Barton and T. Wang, Tetrahedron Lett., 1994, 35, 5149-5152 CrossRef CAS.
- K. B. Wiberg and S. D. Nielsen, J. Org. Chem., 1964, 29, 3353-3361 CrossRef CAS.
- Z. Rappoport, P. D. Sleezer, S. Winstein and W. G. Young, Tetrahedron Lett., 1965, 26, 3719-3721 CrossRef.
- Z. Rappoport, P. D. Sleezer, S. Winstein and W. G. Young, J. Am. Chem. Soc., 1972, 94, 2320-2322 CrossRef CAS.
- K. B. Sharpless and R. F. Lauer, J. Am. Chem. Soc., 1972, 94, 7154-7155 CrossRef CAS.
- D. Arigoni, A. Vasella, K. B. Sharpless and H. P. Jensen, J. Am. Chem. Soc., 1973, 95, 7917-7919 CrossRef CAS.
- D. A. Singleton and C. Hang, J. Org. Chem., 2000, 65, 7554-7560 CrossRef CAS PubMed.
- K. William, S. Winstein, W. G. Young and Z. Rappoport, J. Am. Chem. Soc., 1966, 88, 2054-2055 CrossRef.
- S. Uemura, S. Fukuzawa, A. Toshimitsu and M. Okano, Tetrahedron Lett., 1982, 23, 87-90 CrossRef CAS.
- J. E. McMurry and P. Kocovsky, Tetrahedron Lett., 1984, 25, 4187-4190 CrossRef CAS.
- C. Jia, P. Müller and H. Mimoun, J. Mol. Catal. A: Chem., 1995, 101, 127-133 CrossRef CAS.
- N. Y. Kozitsyna, M. N. Vargaftik and I. I. Moiseev, J. Organomet. Chem., 2000, 593-594, 274-291 CrossRef CAS.
- A. K. El-Qisiari, H. A. Qaseer and P. M. Henry, Tetrahedron Lett., 2002, 43, 4229-4231 CrossRef CAS.
- I. l. Moiseev and M. N. Vargaftik, Coord. Chem. Rev., 2004, 248, 2381-2391 CrossRef CAS.
- W. G. Dauben, M. Lorber and D. S. Fullerton, J. Org. Chem., 1969, 34, 3587-3592 CrossRef CAS.
- P. Müller and T. T. Khoi, Tetrahedron Lett., 1977, 18, 1939-1942 CrossRef.
- M. Hirano, K. Nakamura and T. Morimoto, J. Chem. Soc., Perkin Trans. 2, 1981, 817-820 RSC.
- T. Morimoto, T. Machida, M. Hirano and X. Zhung, J. Chem. Soc., Perkin Trans. 2, 1981, 909-913 Search PubMed.
- H. Alper and M. Harustiak, J. Mol. Catal., 1993, 84, 87-92 CrossRef CAS.
- T. Punniyamurthy and J. Iqbal, Tetrahedron Lett., 1994, 35, 4003-4006 CrossRef CAS.
- H. Alper and M. Harustiak, J. Mol. Catal., 1993, 84, 87-92 CrossRef CAS.
- J. R. Gilmore and J. M. Mellor, J. Chem. Soc. C, 1971, 2355-2357 RSC.
- F. J. McQuillin and M. Wood, J. Chem. Res., 1977, 61 CAS.
- F. Minisci and R. Galli, Tetrahedron Lett., 1963, 357-360 CrossRef CAS.
- S. Uemura and S. R. Patil, Chem. Lett., 1982, 1743-1746 CrossRef CAS.
- J. E. Baldwin and J. C. Swallow, Angew. Chem., Int. Ed. Engl., 1969, 8, 601-602 CrossRef CAS.
- A. Morvillo and M. Bressan, J. Mol. Catal., 1986, 37, 63-74 CrossRef CAS.
- J. Czaplinska, I. Sobczak and M. Ziolek, J. Phys. Chem. C, 2014, 118, 12796-12810 CAS.
- G. Saidulu, N. Anand, K. S. R. Rao, A. Burri, S. E. Park and D. R. Burri, Catal. Lett., 2011, 141, 1865-1871 CrossRef CAS.
- A. Narani, R. K. Marella, P. Ramudu, K. S. R. Rao and D. R. Burri, RSC Adv., 2014, 4, 3774-3781 RSC.
- T. Asefa, A. Anan, C. T. Duncan and Y. Xie Invited Chapter of a Book “Non Magnetic Bi-Metallic and Metal Oxide Nanomaterials for Life Sciences”, ed. C. S. S. R. Kumar, Wiley-VCH, 2009 Search PubMed.
- T. Asefa, C. T. Duncan and K. K. Sharma, Analyst, 2009, 134, 1980-1990 RSC.
- Y. Hao, Y. Chong, S. Li and H. Yang, J. Phys. Chem. C, 2012, 116, 6512-6519 CAS.
- H. Yang, Z. Ma, T. Zhou, W. Zhang, J. Chao and Y. Qin, ChemCatChem, 2013, 5, 2278-2287 CrossRef CAS.
- S. Samadi, K. Jadidi and B. Notash, Tetrahedron: Asymmetry, 2013, 24, 269-277 CrossRef CAS.
- S. Samadi, S. Nazari, H. Arvinnezhad, K. Jadidi and B. Notash, Tetrahedron, 2013, 69, 6679-6686 CrossRef CAS.
- L. Faraji, S. Samadi, K. Jadidi and B. Notash, Bull. Korean Chem. Soc., 2014, 35, 1989-1995 CrossRef CAS.
- S. Samadi, K. Jadidi, B. Khanmohammadi and N. Tavakoli, J. Catal., 2016, 340, 344-353 CrossRef CAS.
- D. Zhao, J. Feng, Q. Huo, N. Malosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky, Science, 1998, 279, 548-552 CrossRef CAS PubMed.
- X. Zhang, E. Sau Man Lai, R. Martin-Aranda and K. L. Yeung, Appl. Catal., A, 2004, 261, 109-118 CrossRef CAS.
Footnote
† Electronic supplementary information (ESI) available: Supplementary data (included IR, 1H and 13C spectra of compounds
1-5 and the procedure of synthesis
1, IR, SEM, EDX, X-ray scattering and elemental mapping for prepared catalysts and the typical procedure for the synthesis of SBA-15, NH2-SBA-15). See DOI: 10.1039/c7ra02995k
This journal is © The Royal Society of Chemistry 2017