Trang thông tin tổng hợp
Trang thông tin tổng hợp
  • người nổi tiếng
  • Thơ Văn Học
  • chính tả
  • Hình ảnh đẹp
người nổi tiếng Thơ Văn Học chính tả Hình ảnh đẹp
  1. Trang chủ
  2. Thơ Văn Học
Mục Lục

Điều Kiện để Phương Trình Bậc 3 Có 3 Nghiệm - Bí Quyết và Ứng Dụng

avatar
kenvin
10:38 14/12/2025

Mục Lục

Làm Chủ BIM: Bí Quyết Chiến Thắng Mọi Gói Thầu Xây Dựng

Điều Kiện Để Phương Trình Bậc 3 Có 3 Nghiệm

Cách Giải Tổng Quát Để Xác Định Nghiệm Thực Của Phương Trình Bậc 3

Bước 1: Đặt phương trình tổng quát

Phương trình bậc 3 có dạng:

[ f(x) = ax^3 + bx^2 + cx + d = 0 quad (a neq 0) ]

Bước 2: Tính đạo hàm của phương trình

Tính đạo hàm bậc nhất của phương trình:

[ f'(x) = 3ax^2 + 2bx + c ]

Bước 3: Tính phân biệt thức (Delta') của phương trình đạo hàm

Phân biệt thức của phương trình bậc 2 là:

[ Delta' = b^2 - 3ac ]

Bước 4: Xét từng trường hợp của (Delta')

  • Trường hợp 1: (Delta' > 0)
    • Đạo hàm bậc 2 có 2 nghiệm thực phân biệt, nghĩa là phương trình bậc 3 có hai điểm cực trị (1 cực đại và 1 cực tiểu).
    • Giải phương trình ( f'(x) = 0 ) để tìm hai nghiệm ( x_1 ) và ( x_2 ).
    • Tính giá trị của hàm số tại ( x_1 ) và ( x_2 ): [ f(x_1) = ax_1^3 + bx_1^2 + cx_1 + d ] [ f(x_2) = ax_2^3 + bx_2^2 + cx_2 + d ]
    • Nếu ( f(x_1) ) và ( f(x_2) ) có dấu trái ngược nhau, thì phương trình bậc 3 chắc chắn có 3 nghiệm thực phân biệt.
  • Trường hợp 2: (Delta' = 0)
    • Đạo hàm có nghiệm kép, nghĩa là phương trình bậc 3 có một điểm cực trị.
    • Phương trình có 1 nghiệm bội và 1 nghiệm thực đơn.
  • Trường hợp 3: (Delta' < 0)
    • Đạo hàm không có nghiệm thực, nghĩa là đồ thị của phương trình bậc 3 không có điểm cực trị.
    • Khi đó, phương trình bậc 3 chỉ có 1 nghiệm thực duy nhất và 2 nghiệm phức liên hợp.

Bước 5: Kết luận

  • Nếu (Delta' > 0) và dấu của hàm số tại các điểm cực trị trái ngược nhau, phương trình có 3 nghiệm thực phân biệt.
  • Nếu (Delta' = 0), phương trình có nghiệm bội (1 nghiệm bội hai hoặc bội ba).
  • Nếu (Delta' < 0), phương trình chỉ có 1 nghiệm thực và 2 nghiệm phức liên hợp.
Kidolock

Ví Dụ Minh Họa

Ví dụ 1:

Xác định giá trị của ( m ) để hàm số sau có 3 nghiệm phân biệt:

[ f(x) = x^3 - 6x^2 + 9x - m ]

Lời giải:

Để xác định giá trị của ( m ), ta cần tính đạo hàm của hàm số:

[ f'(x) = 3x^2 - 12x + 9 ]

Để tìm điểm cực trị, giải phương trình:

[ 3x^2 - 12x + 9 = 0 ]

Chia phương trình cho 3:

[ x^2 - 4x + 3 = 0 ]

Giải phương trình bậc 2 bằng công thức nghiệm:

[ x = frac{-b pm sqrt{b^2 - 4ac}}{2a} = frac{4 pm sqrt{(-4)^2 - 4 cdot 1 cdot 3}}{2 cdot 1} = frac{4 pm sqrt{16 - 12}}{2} = frac{4 pm 2}{2} ]

Kết quả sẽ là:

[ x_1 = 3 quad text{và} quad x_2 = 1 ]

Ta tính giá trị của hàm số ( f(x) ) tại các điểm cực trị:

1. Tại ( x = 3 ): [ f(3) = (3)^3 - 6(3)^2 + 9(3) - m = 27 - 54 + 27 - m = 0 - m = -m ] 2. Tại ( x = 1 ): [ f(1) = (1)^3 - 6(1)^2 + 9(1) - m = 1 - 6 + 9 - m = 4 - m ]

Để hàm số có 3 nghiệm phân biệt, giá trị ( f(3) ) và ( f(1) ) phải khác dấu:

[ (-m)(4 - m) < 0 ]

Giải bất phương trình này có hai trường hợp:

  1. (-m < 0) và (4 - m > 0):

    • (m > 0) và (m < 4) ⇒ (0 < m < 4)
  2. (-m > 0) và (4 - m < 0):

    • (m < 0) và (m > 4) ⇒ Không tồn tại giá trị nào

Kết luận:

Hàm số ( f(x) = x^3 - 6x^2 + 9x - m ) có 3 nghiệm phân biệt khi:

[ 0 < m < 4 ]

Ví Dụ 2:

Tìm giá trị của ( m ) sao cho phương trình sau có 3 nghiệm phân biệt:

[ 2x^3 + 3x^2 - 12x + 2m - 1 = 0 ]

Lời giải:

Đặt hàm số:

[ f(x) = 2x^3 + 3x^2 - 12x + 2m - 1 ]

Để hàm số có 3 nghiệm phân biệt, ta cần sử dụng điều kiện về đạo hàm.

Tính đạo hàm của hàm số ( f(x) ):

[ f'(x) = 6x^2 + 6x - 12 ]

Để tìm điểm cực trị, ta giải phương trình ( f'(x) = 0 ):

[ 6x^2 + 6x - 12 = 0 ]

Chia cả phương trình cho 6:

[ x^2 + x - 2 = 0 ]

Giải phương trình bậc 2 bằng công thức nghiệm:

[ x = frac{-b pm sqrt{b^2 - 4ac}}{2a} ]

Áp dụng với ( a = 1, b = 1, c = -2 ):

[ x = frac{-1 pm sqrt{1^2 - 4 cdot 1 cdot (-2)}}{2 cdot 1} = frac{-1 pm sqrt{1 + 8}}{2} = frac{-1 pm 3}{2} ]

Kết quả sẽ là:

[ x_1 = 1 quad text{và} quad x_2 = -2 ]

Ta tính giá trị của hàm số ( f(x) ) tại các điểm cực trị:

1. Tại ( x = 1 ): [ f(1) = 2(1)^3 + 3(1)^2 - 12(1) + 2m - 1 = 2 + 3 - 12 + 2m - 1 = 2m - 8 ] 2. Tại ( x = -2 ): [ f(-2) = 2(-2)^3 + 3(-2)^2 - 12(-2) + 2m - 1 = 2(-8) + 3(4) + 24 + 2m - 1 = -16 + 12 + 24 + 2m - 1 = 2m + 19 ]

Để hàm số có 3 nghiệm phân biệt, hai giá trị ( f(1) ) và ( f(-2) ) phải khác dấu:

[ (2m - 8)(2m + 19) < 0 ]

Giải bất phương trình:

Để giải bất phương trình ( (2m - 8)(2m + 19) < 0 ), ta tìm các nghiệm của:

1. ( 2m - 8 = 0 ) ⇒ ( m = 4 ) 2. ( 2m + 19 = 0 ) ⇒ ( m = -frac{19}{2} )

Các điểm phân chia là ( m = -frac{19}{2} ) và ( m = 4 ). Ta kiểm tra dấu của các khoảng:

  • Khi ( m < -frac{19}{2} ), cả hai nhân đều âm, tích dương.
  • Khi ( -frac{19}{2} < m < 4 ), một nhân dương một nhân âm, tích âm.
  • Khi ( m > 4 ), cả hai nhân đều dương, tích dương.

Kết luận:

Hàm số ( 2x^3 + 3x^2 - 12x + 2m - 1 = 0 ) có 3 nghiệm phân biệt khi:

[ -frac{19}{2} < m < 4 ]

Ví Dụ 3:

Tìm các giá trị của ( m ) để phương trình sau có ba nghiệm phân biệt:

[ x^3 + x^2 - (m + 2)x + m = 0 ]

Lời giải:

Đặt hàm số:

[ f(x) = x^3 + x^2 - (m + 2)x + m ]

Để hàm số có ba nghiệm phân biệt, ta cần tính đạo hàm của hàm số:

[ f'(x) = 3x^2 + 2x - (m + 2) ]

Để tìm điểm cực trị, giải phương trình:

[ 3x^2 + 2x - (m + 2) = 0 ]

Áp dụng công thức nghiệm cho phương trình bậc 2:

[ x = frac{-b pm sqrt{b^2 - 4ac}}{2a} = frac{-2 pm sqrt{(2)^2 - 4 cdot 3 cdot (- (m + 2))}}{2 cdot 3} = frac{-2 pm sqrt{4 + 12(m + 2)}}{6} ]

Để phương trình có hai nghiệm phân biệt, điều kiện cần là:

[ b^2 - 4ac > 0 ] Tức là: [ 4 + 12(m + 2) > 0 ] [ 12(m + 2) > -4 ] [ m + 2 > -frac{1}{3} ] [ m > -frac{7}{3} ]

Tiếp theo, ta tính giá trị của hàm số tại các điểm cực trị để kiểm tra điều kiện tồn tại 3 nghiệm phân biệt:

Đặt các điểm cực trị:

[ x_1 = frac{-2 + sqrt{4 + 12(m + 2)}}{6}, quad x_2 = frac{-2 - sqrt{4 + 12(m + 2)}}{6} ]

Ta tính giá trị của hàm số tại các điểm cực trị:

[ f(x_1) = x_1^3 + x_1^2 - (m + 2)x_1 + m ] [ f(x_2) = x_2^3 + x_2^2 - (m + 2)x_2 + m ]

Để hàm số có 3 nghiệm phân biệt, hai giá trị ( f(x_1) ) và ( f(x_2) ) phải khác dấu:

[ f(x_1) cdot f(x_2) < 0 ]

Để kiểm tra sự tồn tại nghiệm, cần xác định điều kiện:

[ (m + 2)^2 - 4m > 0 ] [ m^2 - 4m + 4 > 0 ]

Điều kiện này sẽ cho chúng ta:

[ (m - 2)^2 > 0 ]

Giải bất phương trình trên:

[ m neq 2 ]

Kết luận:

Hàm số ( x^3 + x^2 - (m + 2)x + m = 0 ) có 3 nghiệm phân biệt khi:

[ m > -frac{7}{3} quad text{và} quad m neq 2 ]

0 Thích
Chia sẻ
  • Chia sẻ Facebook
  • Chia sẻ Twitter
  • Chia sẻ Zalo
  • Chia sẻ Pinterest
In
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS

Cdspvinhlong

Cdspvinhlong Website chia sẻ video, tài liệu, chương trình đào tạo và các hoạt động chuyên môn về sư phạm dành cho giáo viên, sinh viên và những người yêu giáo dục tại Vĩnh Long. Nền tảng hỗ trợ cập nhật kiến thức, kết nối cộng đồng và nâng cao kỹ năng giảng dạy.

© 2025 - Cdspvinhlong

Kết nối với Cdspvinhlong

Trang thông tin tổng hợp
  • Trang chủ
  • người nổi tiếng
  • Thơ Văn Học
  • chính tả
  • Hình ảnh đẹp
Đăng ký / Đăng nhập
Quên mật khẩu?
Chưa có tài khoản? Đăng ký