Trang thông tin tổng hợp
Trang thông tin tổng hợp
  • người nổi tiếng
  • Thơ Văn Học
  • chính tả
  • Hình ảnh đẹp
người nổi tiếng Thơ Văn Học chính tả Hình ảnh đẹp
  1. Trang chủ
  2. Thơ Văn Học
Mục Lục

Công thức tìm hệ số tỉ lệ thuận, hệ số tỉ lệ nghịch (siêu hay)

avatar
kenvin
22:21 09/12/2025

Mục Lục

Bài viết Công thức tìm hệ số tỉ lệ thuận, hệ số tỉ lệ nghịch hay, chi tiết Toán 7 gồm 2 phần: Lý thuyết và Các ví dụ áp dụng công thức trong bài có lời giải chi tiết giúp học sinh dễ học, dễ nhớ Công thức tìm hệ số tỉ lệ thuận, hệ số tỉ lệ nghịch hay, chi tiết.

Công thức tìm hệ số tỉ lệ thuận, hệ số tỉ lệ nghịch (siêu hay)

I. Lý thuyết tìm hệ số tỉ lệ thuận, hệ số tỉ lệ nghịch

1. Tỉ lệ thuận

- Nếu hai đại lượng x; y tỉ lệ thuận với nhau thì tỉ số hai giá trị tương ứng của chúng luôn không đổi.

- Giá trị không đổi đó chính là hệ số tỉ lệ

y1x1=y2x2=y3x3=...=ynxn=k (với k là hệ số tỉ lệ của y với x)

- Nếu đại lượng y tỉ lệ thuận với đại lượng x theo hệ số tỉ lệ k (k ≠ 0) thì ta nói đại lượng x tỉ lệ thuận với đại lượng y theo hệ số tỉ lệ là 1k.

2. Tỉ lệ nghịch

- Nếu hai đại lượng x; y tỉ lệ nghịch với nhau thì tích hai giá trị của chúng luôn không đổi.

- Giá trị không đổi đó chính là hệ số tỉ lệ

x1.y1=x2.y2=...=xn.yn=a(với a là hệ số tỉ lệ).

- Nếu đại lượng y tỉ lệ nghịch với đại lượng x theo hệ số tỉ lệ a (a ≠ 0) thì đại lượng x cũng tỉ lệ nghịch với đại lượng y theo hệ số tỉ lệ a.

II. Các ví dụ tìm hệ số tỉ lệ thuận, hệ số tỉ lệ nghịch:

Ví dụ 1: Cho hai đại lượng x và y tỉ lệ với nhau. Biết x1=3;y1=6. Tìm hệ số tỉ lệ của y đối với x trong các trường hợp sau:

a) y tỉ lệ thuận với x.

b) y tỉ lệ nghịch với x.

Lời giải:

a) Vì y và x tỉ lệ thuận với nhau nên ta có hệ số tỉ lệ:

k=y1x1=63=2

Vậy 2 là hệ số tỉ lệ khi y tỉ lệ thuận với x.

b) Vì y và x tỉ lệ nghịch với nhau nên ta có hệ số tỉ lệ:

a=x1.y1=3.6=18

Vậy 18 là hệ số tỉ lệ khi y tỉ lệ nghịch với x.

Ví dụ 2: Cho hai đại lượng x và y tỉ lệ thuận với nhau và khi x = 8 thì y = 12.

a) Tìm hệ số tỉ lệ k của y đối với x và biểu diễn y theo x.

b) Tính giá trị của y khi x = 2; x = -4.

Lời giải:

a) Vì x và y tỉ lệ thuận với nhau nên theo công thức hệ số tỉ lệ ta có:

k=yx với x = 8; y = 12.

⇒k=128=32

Do đó hệ số tỉ lệ của y đối với x là 32.

Biểu diễn y theo x: y=32x.

b) Với x = 2 ⇒y=32.2=3

Với x = -4 ⇒y=32.−4=−6.

Kết luận: Với x = 2 thì y = 3; với x = -4 thì y = -6

Ví dụ 3: Cho hai đại lượng x và y tỉ lệ nghịch với nhau và khi x = 6 thì y = 15.

a) Tìm hệ số tỉ lệ của y đối với x.

b) Biểu diễn y theo x.

c) Tính giá trị của y khi x = 3; x = -45.

Lời giải:

a) Vì x và y tỉ lệ nghịch với nhau nên hệ số tỉ lệ của y đối với x là:

a = xy.

Với x = 6; y = 15 ⇒a=6.15=90

Vậy hệ số tỉ lệ của y đối với x là 90.

b) Biểu diễn y theo x là: y=ax⇒y=90x

c) Với x = 3 ⇒y=903=30

Với x = - 45 ⇒y=90−45=−2.

Kết luận: Với x = 3 thì y = 30; với x = -45 thì y = -2

Ví dụ 4: Cứ 100kg thóc thì cho 70kg gạo. Hỏi 2 tấn thóc thì cho bao nhiêu kg gạo.

Lời giải:

Đổi 2 tấn = 2000kg

Vì số kg thóc và số kg gạo tỉ lệ thuận với nhau nên ta có:

y1x1=y2x2

Với y1 = 70kg; x1 = 100kg; x2 = 2000kg, ta có:

70100=y22000⇒100y2=70.2000

⇔100y2=140000

⇔y2=140000:100

⇔y2=1400

Vậy ứng với 2 tấn thóc ta thu được 1400kg gạo.

Ví dụ 5: Bạn Lan đi từ nhà đến trường với vận tốc 12km/h hết nửa giờ. Nếu Lan đi với vận tốc 10km/h thì hết bao nhiêu thời gian.

Lời giải:

Vì thời gian và vận tốc là hai đại lượng tỉ lệ nghịch với nhau nên ta có x1.y1=x2.y2

Với x1=12km/h; x2=10km/h; y1=0,5h, ta có:

12.0,5=10.y2⇔10y2=6

⇔y2=6:10⇔y2=0,6

Vậy thời gian Lan đi từ nhà đến trường với vận tốc 10km/h là 0,6h.

Ví dụ 6: Biết 56 công nhân hoàn thành công việc trong 21 ngày. Nếu năng suất làm việc của mỗi công nhân là như nhau thì cần tăng thêm bao nhiêu công nhân nữa để công việc có thể xong trong 14 ngày.

Lời giải:

Vì thời gian làm việc và số công nhân làm việc tỉ lệ nghịch với nhau nên ta có: x1.y1=x2.y2

Với x1=21 ngày; x2=14 ngày; y1=56 công nhân, ta có:

56.21=14.y2⇔14y2=1176

⇔y2=1176:14⇔y2=84 công nhân.

Vậy số công nhân cần tăng thêm là:

84 - 56 = 28 (công nhân)

Vậy cần tăng thêm 28 công nhân để có thể hoàn thành công việc trong 14 ngày.

Xem thêm các Công thức Toán lớp 7 quan trọng hay khác:

  • Cách vẽ đồ thị hàm số y = ax hay, chi tiết

  • Tổng ba góc trong một tam giác hay, chi tiết

  • Công thức tính góc ngoài tam giác hay, chi tiết

  • Các trường hợp bằng nhau của hai tam giác thường hay, chi tiết

  • Tính chất tam giác vuông, tam giác cân, tam giác đều, tam giác vuông cân hay, chi tiết

0 Thích
Chia sẻ
  • Chia sẻ Facebook
  • Chia sẻ Twitter
  • Chia sẻ Zalo
  • Chia sẻ Pinterest
In
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS

Cdspvinhlong

Cdspvinhlong Website chia sẻ video, tài liệu, chương trình đào tạo và các hoạt động chuyên môn về sư phạm dành cho giáo viên, sinh viên và những người yêu giáo dục tại Vĩnh Long. Nền tảng hỗ trợ cập nhật kiến thức, kết nối cộng đồng và nâng cao kỹ năng giảng dạy.

© 2025 - Cdspvinhlong

Kết nối với Cdspvinhlong

Trang thông tin tổng hợp
  • Trang chủ
  • người nổi tiếng
  • Thơ Văn Học
  • chính tả
  • Hình ảnh đẹp
Đăng ký / Đăng nhập
Quên mật khẩu?
Chưa có tài khoản? Đăng ký