Trang thông tin tổng hợp
Trang thông tin tổng hợp
  • người nổi tiếng
  • Thơ Văn Học
  • chính tả
  • Hình ảnh đẹp
người nổi tiếng Thơ Văn Học chính tả Hình ảnh đẹp
  1. Trang chủ
  2. chính tả
Mục Lục

Chứng minh hai điểm đối xứng qua một điểm (hay, chi tiết)

avatar
kenvin
16:18 19/12/2025

Mục Lục

Với Chứng minh hai điểm đối xứng qua một điểm hay, chi tiết môn Toán lớp 8 phần Hình học sẽ giúp học sinh ôn tập, củng cố kiến thức từ đó biết cách làm các dạng bài tập Toán lớp 8 Chương 1: Tứ giác để đạt điểm cao trong các bài thi môn Toán 8.

Chứng minh hai điểm đối xứng qua một điểm (hay, chi tiết)

(199k) Xem Khóa học Toán 8 KNTTXem Khóa học Toán 8 CTSTXem Khóa học Toán 8 CD

A. Phương pháp giải

Sử dụng định nghĩa, tính chất của phép đối xứng tâm.

1. Định nghĩa

a) Hai điểm gọi là đối xứng với nhau qua điểm O nếu O là trung điểm của đoạn thẳng nối hai điểm đó.

Quy ước: Điểm đối xứng với O qua điểm O chính là điểm O.

b) Hai hình gọi là đối xứng với nhau qua điểm O nếu mỗi điểm thuộc hình này đối xứng với một điểm thuộc hình kia qua điểm O và ngược lại. Điểm O gọi là tâm đối xứng của hai hình đó.

2. Các tính chất thừa nhận

Tính chất 1: Nếu các điểm A và A’, B và B’, C và C’ đối xứng với nhau qua điểm O trong đó C nằm giữa A và B thì C’ nằm giữa A’ và B’.

Tính chất này cho phép ta vẽ hai hình đối xứng với nhau qua một điểm.

Tính chất 2: Nếu hai đoạn thẳng (góc, tam giác) đối xứng nhau qua một điểm thì chúng bằng nhau.

B. Ví dụ minh họa

Ví dụ 1. Cho hình bình hành ABCD. Gọi E là điểm đối xứng với D qua điểm A và F là điểm đối xứng với D qua điểm C. Chứng minh rằng điểm E đối xứng với điểm F qua điểm B.

Giải

Vẽ các điểm E và F sao cho: A là trung điểm của DE hay DA = AE (1); C là trung điểm của DF hay DC = CF (2) thì E đối xứng với D qua A và F đối xứng với D qua C.

Vì ABCD là hình bình hành nên AD//BC

⇒AE//BC (3) và DA = BC (4)

Từ (1), (4) suy ra AE = BC. (5)

Từ (3) và (5) ta có tứ giác ACBE có hai cạnh đối song song và bằng nhau nên là hình bình hành.

Áp dụng định nghĩa và tính chất về cạnh vào hình bình hành ACBE, ta được:

AC//BE và AC = BE. (6)

Chứng minh tương tự, ta được tứ giác ACFB là hình bình hành nên

AC//BF và AC = BF. (7)

Từ (6), (7) suy ra E, B, F thẳng hàng và BE = BF do đó B là trung điểm của EF hay E đối xứng với F qua B.

Ví dụ 2. Cho góc vuông xOy, điểm A nằm trong góc đó. Gọi B là điểm đối xứng với A qua Ox, C là điểm đối xứng với A qua Oy. Chứng minh rằng điểm B đối xứng với điểm C qua O.

Giải

Vẽ , vẽ hai điểm B, C sao cho H, K lần lượt là trung điểm của AB, AC thì B đối xứng với A qua Ox, C đối xứng với A qua Oy. Vì đối xứng với O qua Ox, Oy.

Áp dụng tính chất của phép đối xứng trục, ta có:

Từ (1) và (2) suy ra O là trung điểm của đoạn BC nên B đối xứng với C qua O.

Ví dụ 3. Cho ΔABC, các đường trung tuyến BD, CE. Gọi H là điểm đối xứng với C qua E, K là điểm đối xứng với B qua D. Chứng minh rằng điểm H đối xứng với điểm K qua điểm A.

Giải

Từ giả thiết BD, CE là các đường trung tuyến ta có D, E là trung điểm của AC, AB và giả thiết H đối xứng với C qua E, K đối xứng với B qua D ta lại có D, E lần lượt là trung điểm của BK, CH.

Do đó các tứ giác ACBH, ABCK là các hình bình hành (do hai đường chéo cắt nhau tại trung điểm mỗi đường)

Áp dụng định nghĩa, tính chất và cạnh vào hai hình bình hành trên, ta được:

Điều này chứng tỏ A là trung điểm của HK. Vậy H đối xứng với K qua A.

Ví dụ 4. Cho ΔABC , trung tuyến BD. Gọi E đối xứng với B qua A, I đối xứng với B qua D, F đối xứng với B qua C. Chứng minh rằng E đối xứng với F qua I.

Giải

Từ giả thiết ta có A, D, C lần lượt là trung điểm của BE, BI, BF nên AD, DC thứ tự là đường trung bình của hai tam giác BEI và BIF.

Áp dụng định lí đường trung bình vào hai tam giác trên và giả thiết BD là trung tuyến vào tam giác ABC, ta được:

⇒E, I, F thẳng hàng và EI = IF.

Điều này chứng tỏ I là trung điểm của EF hay E đối xứng với F qua I.

Ví dụ 5. Cho tam giác ABC. Gọi D là điểm đối xứng với B qua A, E là điểm đối xứng với C qua A. Lấy các điểm I, K theo thứ tự thuộc các đoạn thẳng DE, BC sao cho DI = BK. Chứng minh rằng K đối xứng với I qua A.

Giải

Xét tam giác ADE và ABC có:

+ AB = AD (vì D đối xứng với B qua A)

+ (đối đỉnh)

+ AE = AC (vì E đối xứng với C qua A)

Nên (c-g-c), suy ra

Xét tam giác ADI và ABK có:

+ AD = AB (vì D đối xứng với B qua A)

+ (cmt)

+ DI = BK (gt)

Nên mà B, A, D thẳng hàng nên K, A, I thẳng hàng.

Lại có IA = AK (do ) nên điểm K đối xứng với I qua A.

(199k) Xem Khóa học Toán 8 KNTTXem Khóa học Toán 8 CTSTXem Khóa học Toán 8 CD

Xem thêm các dạng bài tập Toán lớp 8 chọn lọc hay khác:

  • Chứng minh hai đoạn thẳng hoặc hai góc bằng nhau sử dụng đối xứng tâm
  • Cách chứng minh tứ giác là hình chữ nhật (hay, chi tiết)
  • Tìm điều kiện của hình A để hình B trở thành hình chữ nhật
  • Chứng minh hai đoạn thẳng, hai góc bằng nhau trong hình chữ nhật
  • Chứng minh hai đường thẳng vuông góc dựa vào hình chữ nhật

Xem thêm các loạt bài Để học tốt Toán lớp 8 hay khác:

  • Giải bài tập Toán 8
  • Giải sách bài tập Toán 8
  • Top 75 Đề thi Toán 8 có đáp án
0 Thích
Chia sẻ
  • Chia sẻ Facebook
  • Chia sẻ Twitter
  • Chia sẻ Zalo
  • Chia sẻ Pinterest
In
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS
  • Điều khoản sử dụng
  • Chính sách bảo mật
  • Cookies
  • RSS

Cdspvinhlong

Cdspvinhlong Website chia sẻ video, tài liệu, chương trình đào tạo và các hoạt động chuyên môn về sư phạm dành cho giáo viên, sinh viên và những người yêu giáo dục tại Vĩnh Long. Nền tảng hỗ trợ cập nhật kiến thức, kết nối cộng đồng và nâng cao kỹ năng giảng dạy.

© 2025 - Cdspvinhlong

Kết nối với Cdspvinhlong

Trang thông tin tổng hợp
  • Trang chủ
  • người nổi tiếng
  • Thơ Văn Học
  • chính tả
  • Hình ảnh đẹp
Đăng ký / Đăng nhập
Quên mật khẩu?
Chưa có tài khoản? Đăng ký